| 1 | (i) | 0 | $[1]$ | | |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| | (ii) | 18 | $[1]$ | | |
| | (iii) | $\frac{1}{2}$ or 0.5 | 1 | | |
| | | $[1]$ | | | |

| $\mathbf{2}$ | | $\log 235+\log 5^{x}=\log 987$
 $[x=] \frac{\log 987-\log 235}{\log 5}$ oe | M1 | $\log 5^{x}=\log \left(\frac{987}{235}\right)$ |
| :--- | :--- | :--- | :---: | :--- | :--- |
| 0.892 cao | M1 | $[x=] \log _{5}\left(\frac{987}{235}\right)$ | | |
| | | A1 | | |

\(\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline 3 & & \begin{array}{l}y-a=x^{b} \\
\log _{10}(y-a)=b \log _{10} x \\
{\left[\log _{10} x=\right] \frac{\log _{10}(y-a)}{b}}\end{array}
$$ \& M1 \& \& M1 \\
M M0 earned, allow SC1 for b \log _{10} x term \\

seen\end{array}\right]\)| A1 |
| :--- |
| [3] |

4	(i) $17 \log _{10} x$ or $\log _{10} x^{17}$	B2	M1 for $5 \log _{10} x$ or $12 \log _{10} x$ or $\log _{10} x^{12}$ as part of the first step	condone omission of base
4	(ii) $-b$	B2	M1 for $\log _{a} 1=0$ or $\log _{a} a=1$ soi	allow $0-b$

5	(i) 50% of 25000 is 12500 and population [in 2005] is 12000 [so consistent]	B1	or 12000 is 48% of 25000 so less than 50% [so consistent]	
5	(ii) $\log ^{10}$ 10 $P=\log _{10} a-k t$ or $\log _{10} 6=-k t ~ o . e . ~ w w w ~$	B2	condone omission of base; M1 for $\log _{10} P=\log _{10} a+\log _{10} 10^{-k t}$ or better www	

5	(iii) 4.27, 4.21, 4.13, plots ruled line of best fit drawn	$\begin{aligned} & \text { B1 } \\ & \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	accept 4.273..., 4.2108..., 4.130..., 4.079... rounded to 2 or more dp 1 mm tolerance ft their values if at least 4 correct values are correctly plotted	f.t. if at least two calculated values correct must have at least one point on or above and at least one point on or below the line and must cover $0 \leq t \leq 25$
5	$\begin{aligned} & \text { (iv) } a=25000 \text { to } 25400 \\ & 0.01 \leq k \leq 0.014 \\ & P=a \times 10^{-k t} \text { or } P=10^{\log a-k t} \text { with } \\ & \text { values in acceptable ranges } \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B2 } \\ & \text { B1 } \end{aligned}$	allow $10^{\text {4.4.. }}$ M1 for $-k=\mathbf{N}$. using values from table or graph; condone $+k$ B0 if left in logarithmic form	M1 for a correct first step in solving a pair of valid equations in either form A1 for k A1 for a A1 for $P=a \times 10^{-k t}$
5	(v) $P=a \times 10^{-35 k}$ 8600 to 9000 comparing their value with 9375 o.e. and reaching the correct conclusion for their value	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Their a and k f.t.	allow $\log P=\log a-35 k$

6	(i)	$\begin{aligned} & 2 x+1=\frac{\log 10}{\log 3} \text { o.e. } \\ & {[x=10.55} \end{aligned}$	GI DG1 M1 A2	for curve of correct shape in both quadrants must go through $(0,1)$ shown or M1 for $2 x+1=\log _{2} 10$ A1 for ather versions of $0.547 \ldots$ or 0.548	5

| 7 | (i) | $\log P=\log a+b t \quad w w w$
 comparison with $y=m x+c$ s.o.i
 intercept $=\log _{10} a$ | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | | | |
| (ii) | must be with correct equation
 dependent on correct equation | 3 | |
| $[2.12,2.21], 2.32,2.44,2.57,2.69$
 plots ft
 ruled line of best fit | 1 | 1 | Between $(10,2.08)$ and $(10,2.12)$ |

| (iii) | $0.0100 \leq \mathrm{m}<0.0125$
 $\mathrm{a}=10^{\mathrm{c}}$ or loga $=\mathrm{c}$
 $P=10^{\mathrm{c}} \times 10^{\mathrm{m} t}$ or $10^{\mathrm{m} t+\mathrm{c}}$
 (iv)
 use of $t=105$
 $1.0-2.0$ billion approx
 unreliable since extrapolation o.e.
 B2
 M1 for $\frac{y \text { step }}{x-\text { step }}$
 E1 | B1 | $1.96 \leq \mathrm{c} \leq 2.02$ |
| :--- | :--- | :--- | :--- | :--- |
| B1 | f.t. their m and a | 4 | |

$\mathbf{8}$	(i) 1	1					
	(ii) (A) $3.5 \log _{a} x$						
(ii) (B) $-\log _{a} x$					$\quad 2$	M1 for correct use of $1^{\text {st }}$ or $3^{\text {rd }}$ law	
:---	:---						

