1	(i)	0		
			[1]	
	(ii)	18		
			[1]	
	(iii)	$\frac{1}{-}$ or 0.5	1	
		$\frac{1}{2}$ or 0.3		
			[1]	

2	$\log 235 + \log 5^x = \log 987$	M1	$\log 5^x = \log\left(\frac{987}{235}\right)$	
	$[x=]\frac{\log 987 - \log 235}{\log 5}$	oe M1	$[x =] \log_5\left(\frac{987}{235}\right)$	
	0.892 cao	A1 [3]		

3	$y-a=x^b$	M1		condone omission of base of log
	$\log_{10}\left(y-a\right) = b\log_{10}x$	M1	if M0 earned, allow SC1 for $b \log_{10} x$ term seen	
	$[\log_{10} x =] \frac{\log_{10} \left(y - a\right)}{b}$	A1	SC2 for correct answer without working	
		[3]		

4	(i) $17 \log_{10} x$ or $\log_{10} x^{17}$	B2		condone omission of base
			as part of the first step	
4	(ii) - <i>b</i>	B2	M1 for $\log_a 1 = 0$ or $\log_a a = 1$ soi	allow 0 - <i>b</i>

5	(i) 50% of 25 000 is 12 500 and population [in 2005] is 12 000 [so consistent]	B1	or 12 000 is 48% of 25 000 so less than 50%[so consistent]	
5	(ii) $\log_{10} P = \log_{10} a - kt$ or $\log_{10} a = -kt$ o.e. www	B2	condone omission of base; M1 for $\log_{10} P = \log_{10} a + \log_{10} 10^{-kt}$ or better www	
5	(iii) 4.27, 4.21, 4.13, plots ruled line of best fit drawn	B1 B1 B1	accept 4.273, 4.2108, 4.130, 4.079 rounded to 2 or more dp 1 mm tolerance ft their values if at least 4 correct values are correctly plotted	f.t. if at least two calculated values correct must have at least one point on or above and at least one point on or below the line and must cover $0 \le t \le 25$
5	(iv) $a = 25000$ to 25400 $0.01 \le k \le 0.014$ $P = a \times 10^{-kt}$ or $P = 10^{\log a - kt}$ with values in acceptable ranges	B1 B2 B1	allow $10^{4.4}$ M1 for $-k = 200$ using values from table or graph; condone $+k$ B0 if left in logarithmic form	M1 for a correct first step in solving a pair of valid equations in either form A1 for k A1 for a A1 for $P = a \times 10^{-kt}$
5	(v) $P = a \times 10^{-35k}$ 8600 to 9000 comparing their value with 9375 o.e. and reaching the correct conclusion for their value	M1 A1 A1	Their a and k f.t.	allow $\log P = \log a - 35k$

6	(i)	× • /	GI	for curve of correct shape in both quadrants	
		1	DG1	must go through (0, 1) shown	
	(ii)	$2x + 1 = \frac{\log 10}{\log 3}$ o.e. $[x = 1 \ 0.55]$	MI A2	or M1 for $2x + 1 = \log_3 10$ A1 for other versions of 0.547or 0.548	5

7	(i)	$\log P = \log a + ht$ www comparison with $y = mx + c$ s.o.i. intercept = $\log_{10} a$	1 1 1	must be with correct equation dependent on correct equation	3
	(ii)	[2.12, 2.21], 2.32, 2.44, 2.57, 2.69 plots ft ruled line of best fit	1 1	Between (10, 2.08) and (10, 2.12)	3
	(iii)	0.0100 ≤ m < 0.0125	B2	M1 for $\frac{y - \text{step}}{x - \text{step}}$	
		$a = 10^{c}$ or $loga = c$	B1	$1.96 \le c \le 2.02$	
		$P = 10^{\circ} \times 10^{ml} \text{ or } 10^{ml+\circ}$	B1	f.t. their m and a	4
	(iv)	use of $t = 105$	B1		
		1.0 – 2.0 billion approx unreliable since extrapolation o.e.	B1 E1		3

8	(i) 1	1		
	(ii) (A) $3.5 \log_a x$	2	M1 for correct use of 1 st or 3 rd law	
	(ii) $(B) - \log_a x$	1		4